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The evolution and bifurcation of a pendant drop 
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In this paper we calculate how a pendant drop evolves at the end of a nozzle when the 
volume of the drop increases steadily with time. We find that the character of the 
evolution is strongly dependent on the growth rate of the drop and the radius of the 
nozzle. Typically we find that once the drop has become unstable, two bifurcations 
occur shortly after each other when the growth rate of the drop is slow. For large 
growth rates the bifurcations are well-separated in time. We are able to calculate the 
volumes of the drops after the bifurcations. A comparison with experimental data 
shows a satisfactory agreement. 

1. Introduction 
Many people, at some time, will have observed the formation of a pendant drop at 

the end of a tap. One sees that the drop grows slowly at first but the evolution speeds 
up once the drop has grown beyond a certain size. The evolution of the drop close to 
the breaking point is very rapid indeed so that intricate details of the very complex 
bifurcation behaviour are almost impossible to discern with the naked eye. It is 
however possible to see that usually not just one drop breaks away: besides the main 
drop there is often a small secondary drop. The presence of this secondary drop was 
remarked upon by Guthrie (1863) and Worthington (1881), but it was not until high- 
speed camera equipment was developed that the full details of the bifurcation process 
could be observed. One of the first sequences of photographs, showing details of the 
bifurcation process and the effect of viscosity on the bifurcation behaviour, was 
published by Hauser et al. (1936). More recently, a very clear sequence of photographs 
showing details of the bifurcation was published by Peregrine, Shoker & Symon (1990). 
These photographs show that immediately prior to the bifurcation, the fluid region 
consists of an almost spherical drop connected through a thin liquid bridge to a 
conically shaped region. A bifurcation occurs first at the point at which the liquid 
bridge is connected to the drop. Subsequently, the drop descends and large undulations 
form on the liquid bridge as a result of the recoil following the bifurcation. Eventually 
a secondary bifurcation occurs on the liquid bridge, resulting in the formation of a 
satellite drop. This satellite drop has a much smaller volume than the main drop. 

Experimental measurements have shown that the volume of fluid which breaks away 
from the point of attachment of the drop is significantly less than the critical volume 
for which the drop is just stable. Of the total volume of a pendant drop, as little as half 
may break away. Early experiments to measure the volume of a drop falling from the 
tip of a pipette were carried out by Tate (1864) and Rayleigh (1899). Later, Harkins 
& Brown (19 19) carried out very careful and precise experiments on drop volumes with 
the aim to infer the coefficient of surface tension from the volume of the drop. It is 
important to note that in all experimental determinations of drop volumes, the total 
volume of fluid breaking away from the point of attachment, that is the combined 
volumes of the main drop and the satellite drop, is measured. 
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Attempts to obtain a theoretical estimate of the actual volume which has broken 
away are severely hampered by the fact that after the stability boundary has been 
passed, the fluid domain undergoes enormous deformations before the bifurcation 
actually occurs. It is clear that linear theories are not applicable in this unstable regime. 
Besides some asymptotic work on idealized problems by Ting & Keller (1990), it 
appears that the evolution of a pendant drop close to the bifurcation point has only 
recently been studied, by Eggers (1993) and Eggers & Dupont (1994). Eggers (1993) 
uses an expansion of the Navier-Stokes equations in the radial coordinate to study the 
self-similar behaviour of the necking region. To model the evolution of the complete 
pendant drop as the bifurcation point is approached, Eggers & Dupont (1994) solve 
(by numerical means) the equations derived by Eggers (1993). A qualitative comparison 
of these calculations with the photographs by Peregrine ef al. (1990) yields a good 
agreement. This agreement is truly remarkable when one realizes that that Eggers’ 
model essentially constitutes a long-wavelength approximation of the Navier-Stokes 
equations. Implicit in this model is the assumption that variations in the axial direction 
occur on a lengthscale which is long compared with a typical radial lengthscale. This 
assumption is certainly not satisfied in the calculations presented by Eggers & Dupont 
(1994). Schulkes (1993) has investigated the accuracy of various one-dimensional 
models for inviscid fluids. He found that the one-dimensional model of Lee (1974), 
which is identical to Eggers’ model when viscous effects are neglected, is only accurate 
when gradients of the free surface are small. Furthermore, Lee’s model was found to 
be highly unstable as soon as short-wavelength effects (such as large gradients) became 
important. No instabilities are mentioned in the calculations by Eggers & Dupont 
(1994) even though the gradient of the free surface is formally infinite at the point at 
which the free surface intersects the symmetry axis. The inclusion of the viscous term 
by Eggers & Dupont (1994) evidently leads to a model with improved accuracy and 
stability characteristics. 

Besides the obvious difficulties of dealing with a highly nonlinear free-boundary 
problem, the bifurcating drop problem has the added difficulty that one is faced with 
the singularity in the governing equations at the bifurcation point. The singularity 
stems from the fact that the curvature tends to infinity as the bifurcation point is 
approached. It will be evident that the large local value of the curvature close to the 
bifurcation point makes the actual bifurcation a violent process. If it were possible to 
continue the calculation beyond the bifurcation point one would be faced with a 
secondary bifurcation leading to the satellite drop as indicated above. Following this 
secondary bifurcation one is left with a conical fluid region. An idea of how this fluid 
cone evolves can be obtained from the study of Keller & Miksis (1983) on the evolution 
of a two-dimensional fluid wedge. They showed that the evolution of the fluid wedge is 
self-similar in character and its seems likely that a similar result may hold for the 
axisymmetric case. 

From the above considerations it is clear that the bifurcation process of a pendant 
drop can be divided into three stages. First, the pendant drop grows until a bifurcation 
occurs, resulting in the formation of the main drop. Subsequently, undulations form 
on a fluid filament, possibly resulting in a secondary bifurcation thereby producing the 
satellite drop. After the secondary bifurcation a cone-shaped fluid region is left which 
contracts in some unknown manner. In this paper we study these three stages of the 
evolution process of the unstable pendant drop. Potential flow conditions are assumed 
and a boundary integral method is used to solve the nonlinear free-boundary problem 
numerically. We investigate how the evolution of the drop is affected by the rate at 
which the drop grows and by the radius of the tube at which the drop forms. We are 
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able to continue the calculation until close to the bifurcation point thereby enabling us 
to calculate the volume of the drops after bifurcation. Special treatment of the free 
surface in the necking region allows us to continue the calculation beyond the 
bifurcation point. These calculations show the formation of a satellite drop quite 
similar to that observed in experiments. A comparison of drop volumes obtained 
experimentally with those obtained in our calculations, shows a satisfactory agreement. 

2. Governing equations 
The governing equations are derived under the important assumptions that the fluid 

is incompressible and that viscous effects are negligible. Under the additional 
assumption that the fluid flow is irrotational, it is well-known that the motion of such 
a fluid is given in terms of a velocity potential which satisfies Laplace's equation. In 
order to simplify the problem still further we assume that the problem is axisymmetric, 
i.e. the velocity potential $ is independent of the azimuthal coordinate. Laplace's 
equation for $ reads therefore 

On the capillary surface three boundary conditions are given. The two kinematic - 

conditions are 
D r  a$ a$ a$ DZ a$ a$ a$ 

- n,-+n,-, -=-- -nr--nz-, -- 
Dt ar an as D t - z -  an as 

and the dynamic condition reads 

In the above equations D / D t  = a /a t  + (V$ - V) denotes a Lagrangian time derivative, 
(n,,n,) is a unit normal to the capillary surface, R, and R, are the principal radii of 
curvature of the free surface and po a pressure constant which is defined by the 
equations governing the static surface. The equations have been made dimensionless by 
taking the radius of the nozzle at which the drop forms as the typical lengthscale and 
the capillary timescale is equal to T = (JIR~/CT) ' /~ .  The dimensionless number which 
appears is the Bond number defined as Bo = pgR2/g .  We assume that initially the free 
surface is flat, situated at the mouth of the nozzle which points vertically downwards. 
The nozzle is taken to be of unit (dimensionless) length, the mouth is situated at z 
= -1, and on the nozzle inlet at z = 0 some volume flux is prescribed. It is 
assumed that at t = 0 the whole system is at rest so that the pressure constant is given 
by p o  = -Bo.  The rim of the nozzle is assumed to be sharp so that no contact- 
angle condition needs to be satisfied on the curve at which the free surface intersects 
the nozzle. By assuming a sharp-rimmed nozzle we implicitly impose the condition that 
the free surface remains fixed to the rim of the nozzle at all times. The sides of the 
nozzle at r = 1 are assumed impermeable so that on the nozzle boundary we have 

On the nozzle inlet we assume that for t > 0 the flux is of the form 
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where We = V"pR/a is the Weber number (V  is a typical fluid velocity at the nozzle 
inlet) and @(r) is some prescribed flux. We shall find it convenient to present results in 
terms of the dimensionless volume flux rather than the Weber number. The 
dimensionless volume flux 9 is the volume of fluid passing through z = 0 per unit time. 
Hence, with +b(r) = r -  1 we obtain 

r dr = x We112/3. 
2-0 

Note that not every function $(r) is admissible since we require that the velocity field 
entering the nozzle through z = 0 should be irrotational. The velocity field generated 
by the potential q5 = ( r -  l )z  of course satisfies this requirement. 

It is important to realize that there are essentially two timescales associated with the 
drop problem. The capillary timescale T defined earlier is the relevant timescale for 
surface-tension-governed dynamic effects. However, given the volume flux through the 
mouth of the nozzle, we find that a drop develops on a timescale 7 = R / V -  T/9. 
Clearly 7 - T only when 9 - O(1). When 9 < 1 changes of the free surface shape are 
generally small on the capillary timescale T. Eventually the drop will become unstable, 
after which significant changes will occur on the capillary timescale. Hence, since the 
main aim of this study is to investigate the evolution process in the unstable regime, we 
have chosen to take T as the relevant timescale. 

The problem outlined in (1)-(5) is of the free-boundary type with the capillary 
surface undergoing large deformations. For this reason it is beneficial to use the 
integral equivalent of (1) which leads to a one-dimensional problem defined only on the 
curve bounding the fluid domain in the (r, z)-plane. Hence, given the Green's function 
for the Laplace equation in an axisymmetric geometry, the integral equation which is 
obtained after application of Green's theorem and the boundary conditions (4) and ( 5 )  
is an integral equation of the first kind for the flux on the free surface. The movement 
of the free surface is governed by the two kinematic conditions (1) while the dynamic 
condition (2) prescribes the velocity potential on the free surface. The given equations 
can only be solved numerically owing to the highly nonlinear character of the evolution 
of the free surface. All details of the numerical approximations and time integration are 
omitted; a discussion of numerical aspects can be found in Schulkes (1994) in which a 
closely related problem was studied. We just mention that extensive regridding is used 
during the time integration in order to control the position of the nodes on the free 
surface. Nodes are relocated after each time step in the numerical integration such that 
the nodal separation is inversely proportional to the local curvature of the surface. This 
has the effect that regions of the surface which are strongly curved have a dense 
distribution of nodes and vice versa. 

3. Behaviour close to the bifurcation point 
As was pointed out earlier, the evolution of the drop is such that after a b i t e  time 

a physical bifurcation of the fluid domain occurs. This bifurcation is the result of the 
fact that for a given nozzle, there is a maximum volume for which the drop is stable, 
see Padday & Pitt (1973). Allowing the volume of the drop to increase beyond this 
maximum leads to the bifurcation whereby a part of the fluid domain breaks away 
from the nozzle. For this bifurcation to occur, a necking region has to form at some 
point in the fluid domain, the bifurcation point being the point at which the radius of 
the neck vanishes. Denoting the radius of the neck by R,, it follows that the curvature 
in the necking region is O( l/R,). Hence, the surface force (which is proportional to the 
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local curvature) tends to infinity as the radius of the neck tends to zero. It should not 
be surprising, therefore, that severe numerical difficulties are experienced as the 
bifurcation point is approached. For this reason the radius of the neck is not allowed 
to decrease below the value R, = 0.02. This is an arbitrary condition only motivated 
by the fact that numerical instabilities are experienced when the radius is allowed to 
decrease further. Generally, instabilities would occur within 5 time steps (with A t  < 
0.01) after the minimum radius of the neck was allowed to decrease below the value 
0.02. It should be pointed out that the nature of the instabilities is entirely numerical. 
With a fixed time step the increased acceleration of the neck would lead to an 
‘overshoot’ of the necking radius: the radius would become negative. Relating the time 
step to the radius of the neck (thereby decreasing the time step as the bifurcation point 
is approached) would only delay difficulties : eventually a floating point exception 
would occur once the radius had decreased sufficiently. These results do no exclude the 
possibility that other instabilities, which may be inherent in the model as the 
bifurcation point is approached, are present. However, within the resolution of our 
code there was no evidence of such instabilities. 

Recently, Om & Prosperetii (1993) studied the problem of the detachment of a 
bubble from a needle in which a bifurcation similar to that outlined above occurs. They 
solved the difficulties associated with the bifurcation by allowing the neck to decrease 
to no further than 10 % of the radius of the needle. The free surface was then joined 
to the symmetry axis by means of a circular arc under the assumption that the 
potential along the arc is constant. We find this approach somewhat unsatisfactory 
since it significantly reduces the strong recoil resulting from the large values of the 
curvature in the necking region. Therefore the following procedure is adopted in our 
calculations. Consider the free-surface configuration as depicted in figure 1 which is a 
typical configuration in the necking region when the calculation is terminated. Assume 
that the node closest to the symmetry axis has coordinates (Ar, z) with Ar = R, < 0.02. 
We now move the node located at (Ar, z )  onto the symmetry axis (cf. figure 1) and the 
value of the velocity potential on the symmetry axis is approximated via 

$(O,z) = $(Ar,z)-Ar- +O(Ar2). 

Note that both q5 and a$/ar are known at the point (Ar, z). Following the bifurcation, 
the fluid region below the bifurcation point (essentially the drop breaking away from 
the nozzle) is no longer incorporated in the calculation. The calculation is continued 
with just the fluid region connected to the nozzle. 

The procedure outlined above completely ignores the intricate motion of the neck in 
a Ar-neighbourhood of the bifurcation point. However, there is reason to believe that 
this approximation affects the dynamics only on very short time- and lengthscales. 
Namely, the tip of the fluid cone which is formed by moving the surface node onto the 
symmetry axis has a curvature O( 1 / Ar) so that the pressure in the tip of the cone is also 
O(l/Ar). In the tip the pressure is balanced by the rate of change of the velocity 
potential, thus aq5/at - u/Ar. Therefore, if 9 changes over a lengthscale Ar the relevant 
timescale for O(Ar)-changes in $ is given by i- (Ara/u)1’2. It follows that O(Ar)- 
changes in $ occur only on short timescales. On longer time- and lengthscales the 
details of the motion near the bifurcation point are unlikely to have a significant effect. 

a$ I (Ar.2) 
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FIGURE 1. 
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Schematic diagram of the necking region. 

4. Examples of calculations 
As a first example we take the case in which Bo = 1 and 22 = 0.01. The free-surface 

shapes during different stages of the evolution are shown in figures 2(u) and 2(b), 
before and after the bifurcation respectively. The dimensionless times at which the free- 
surface shapes are shown are indicated in the plots. Let us consider the dynamics prior 
to the bifurcation in some detail. We observe that the initial stage of the evolution is 
very slow with a drop slowly developing at the mouth of the nozzle. For such a slow 
growth rate it is fair to assume that the shapes of the drop at different stages during 
the evolution are closely approximated by the shapes of static pendant drops with 
corresponding volumes. As long as the volume of the drop is less than the critical 
volume (being the maximum volume for which the drop is stable), the drop will 
continue to evolve slowly. However, once the critical volume is exceeded the drop will 
become unstable and the evolution will speed up. The dimensionless critical volume 
when Bo = 1 is equal to Krgt = 5.26 (see Padday & Pitt 1973). For the given volume 
flux 9 = 0.01 this volume is reached at a time tcrft = Kr,,/9 = 526 and hence for t > 
tcrit we expect an increasingly rapid evolution of the drop. This is exactly what is 
observed in figure 2(u). We see that during the final stages of the evolution before the 
bifurcation, a spherical drop is formed which is connected via a thin liquid bridge to 
a conical region with almost straight sides. 

It was found that the point at which necking occurred was situated immediately 
above the spherical drop. To explain why the bifurcation occurred precisely at this 
point, we note that the pressure in the fluid region is roughly proportional to the 
curvature of the capillary surface. This implies that in the conical region above and the 
spherical region below the liquid bridge, the pressure is significantly lower than inside 
the liquid bridge. Hence, fluid will be squeezed out of the liquid bridge. The point at 
which the pressure gradient is largest corresponds to the region at which the curvature 
of the capillary surface changes most rapidly which, in turn, is also the point at which 
the volume flux out of the liquid bridge is largest. Clearly, the change in curvature of 
the surface is largest at the point at which the liquid bridge is connected to the spherical 
drop. Bifurcation will therefore occur at this point first rather than at the connection 
point between the conical region and the liquid bridge. 

Since we are able to continue the calculation until close to the bifurcation point, it 
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(4 
t =50 (50) 500 t = 540.05 (0.15) 541.40 t =541.45 (0.05) 541.95 

i I I I 

t =O.O00625 (0.00625) 0.03125 t =0.0375 (0.00625) 0.00625 I = 0.0725 

FIGURE 2. Plots of the free-surface shapes of the pendant drop during different stages of the evolution, 
(a) before and (b) after, the bifurcation. The Bond number is Bo = 1 and the discharge rate is 1 = 
0.01. 

is possible to calculate the volume of the fluid region below the bifurcation point. It 
was found that the volume of the spherical drop was equal to V, = 3.93 (the volume 
of fluid breaking away after the ith bifurcation will henceforth be denoted by K). 

Following the bifurcation we observe (figure 2b) that the tip of the liquid filament 
retracts. The tip of the filament develops into a bulbous region and undulations form 
on the liquid filament as the bulbous tip moves upwards. At the same time we note that 
at the point where the liquid filament is connected to the conical region, a neck 
develops. The reason why the neck forms in that particular place is essentially the same 
as the reason why the neck prior to the first bifurcation occurred immediately above 
the spherical drop: the pressure gradient is largest at the point at which the filament 
is connected to the cone. The secondary bifurcation leads to the formation of the 
satellite drop and it is clear that the volume of the satellite drop is much smaller than 
that of the main drop. In fact, we find V, = 0.022 so that the volume of the satellite 
drop is less than 1 % of the volume of the main drop. 

Numerical experiments show that increasing the volume flux to d = 0.1 does not 
lead to significant qualitative changes in the evolution of the drop as compared with 
the case in which d = 0.01. However, a significant change occurs when the volume flux 
is increased to d = 1. The evolution of the drop for the parameters Bo = 1 and 9 = I 
is shown in figures 3(a) and 3(b), before and after the bifurcation respectively. We 
observe (figure 3a) that the volume flux is now so large that the slender liquid bridge 
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r =0.5 (0.5) 8.0 r = 8.25 (0.25) 9.75 t =9.775 (0.025) 9.95 

I 

r=0.1 (0.1) 1.0 r=1.o (0.1) 2.0 r =2 (0.05) 2.5 

FIGURE 3. Plots of the free-surface shapes of the pendant drop during different stages of the evolution, 
(a) before and (b) after, the bifurcation. The Bond number is Bo = 1 and the discharge rate is 9 = 
1 .o. 

seen in the previous case is no longer present. The fluid emerging from the nozzle is 
forced into the fluid region above the bifurcation point thereby producing a long liquid 
cone which connects the nozzle to the drop. As before, the bifurcation occurs 
immediately above the spherical drop, which has the volume = 6.33. Note that this 
drop volume is significantly larger than the drop volume in the case with d = 0.01. 
Following the bifurcation we see (figure 36) that at first the tip of the liquid cone 
retracts upwards and develops the bulbous region seen in the case with 2 = 0.01. 
However, owing to the continued ejection of fluid from the nozzle the tip of the 
distorted cone reaches a maximum height and starts to descend. As it does so, the 
bulbous head continues to expand and a neck starts to develop behind the head. 
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(4 

t=30 (30) 150 r = 163.2 (0.15) 164.55 r = 164.82 (0.0375) 164.97 

(b) 

t =0.025 (0.025) 0.125 t=0.1375 (0.0125) 0.1875 t =0.188 75 
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FIGURE 4. Plots of the free-surface shapes of the pendant drop during different stages of the evolution, 
(a) before and (b) after, the bifurcation. The Bond number is Bo = 4 and the discharge rate is 1 = 
0.01. 

Eventually a second bifurcation occurs with the volume of the secondary drop being 
V, = 2.33. The secondary drop has a volume which is almost 40 % of the volume of the 
primary drop. This is in contrast to the case with 9 = 0.01 where the secondary drop 
had a volume less than 1 YO of that of the primary drop. The large difference in the 
volume of the drop after the second bifurcation is related to the fact that for 9 = 0.01 
the secondary bifurcation occurred only 0.0725 time units after the first bifurcation. In 
contrast, for 9 = 1.0 the secondary bifurcation occurred 2.54 time units after the first 
bifurcation. Hence, for 9 = 1 .O the second bifurcation can be regarded as a bifurcation 
entirely separated from the primary bifurcation while for 9 = 0.01 the primary and 
secondary bifurcations are intimately linked. 

Before we proceed to assess the effect of the Bond number on the evolution of the 
drop, let us briefly reconsider figures 2 and 3. We observe in figure 2 that after the 
second bifurcation one is left with a conical region which is rounded at the tip. In figure 
3 we find that after the first bifurcation the fluid region is also distinctly conical with 
a rounded tip. Hence, under significantly different circumstances the bifurcation 
dynamics of a drop may, at some stage, result in the formation of a conical fluid region. 
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t = 0.25 (0.25) 2.5 t = 3  (0.05) 3.7 t = 3.8 (0.0025) 4.025 

t = 0.0375 (0.0375) 0.375 t =0.4175 (0.0.375) 0.75 t =0.765 (0.015) 0.84 

FIGURE 5. Plots of the free-surface shapes of the pendant drop during different stages of the evolution, 
(a) before and (b) after, the bifurcation. The Bond number is Bo = 4 and the discharge rate is 1 = 
1.0. 



The evolution and bifurcation of a pendant drop 93 

An idea of how a fluid cone evolves under the action of surface tension forces may be 
obtained from the work by Keller & Miksis (1983) who showed that the evolution of 
a two-dimensional fluid wedge was self-similar. When this work is extended to the 
axisymmetric case, the self-similar character of the evolution of the cone is preserved 
(A. C. King 1993, private communications). When we go back to figure 3(b) we 
observe what appears to be a degree of self-similarity immediately after the bifurcation. 
Self-similarity is, however, destroyed by dynamic effects related to the bifurcation. In 
the Appendix we present some calculations of the evolution of conical fluid regions 
which are at rest initially. These calculations strongly suggest that the evolution of the 
fluid cone is self-similar. This implies that on very small time- and lengthscales the 
evolution of the fluid surface immediately after the bifurcation may be self-similar. 

In order to assess the effect of the Bond number on the evolution of the drop we will 
now consider the case in which Bo = 4. As in the case with Bo = 1 we study the 
evolution for the discharge rates 22 = 0.01 and 1. First consider the evolution of the 
drop for the parameters Bo = 4 and 9 = 0.01 as depicted in figures 4(a) and 4(b), 
before and after the first bifurcation respectively. As in the case with Bo = 1 and 9 = 
0.01 we observe that during the initial stage of the evolution, the drop grows only 
slowly. Once the critical volume is exceeded we see that the evolution speeds up 
significantly as the bifurcation point is approached. There are a number of noteworthy 
differences between the present case and the case with Bo = 1 (figure 2a). Clearly, the 
size of the drop relative to the radius of the nozzle has decreased significantly. Also, 
with Bo = 4 the length of the liquid bridge connecting the drop to the nozzle is much 
longer than for Bo = 1 and the conical surface between the liquid bridge and the nozzle 
is no longer as evident with Bo = 4 as it was with Bo = 1. Following the bifurcation 
(figure 4b) we observe essentially the same behaviour as in that depicted in figure 2b. 
The liquid bridge contracts owing to the large curvature at the tip and a bulbous end 
forms at the tip. After some time a secondary bifurcation occurs resulting in the 
satellite drop. The volume of the main drop was found to be V, = 0.935 while the 
secondary drop had a volume of V, = 0.059. Note that the volume of the satellite drop 
is approximately 6 YO of that of the main drop while in the case with Bo = 1 the satellite 
drop had a volume which was less than 1 YO of that of the main drop. 

Increasing the volume flux to 9 = 1 the evolution of the drop before and after the 
bifurcation is as depicted in figures 5(a) and 5(b) respectively. As in the case with Bo 
= 1 and 9 = 1 we find here that the liquid bridge has been replaced by a slender liquid 
cone. Changes to the free surface immediately prior to the bifurcation (figure 5a) are 
confined to the tip of the cone and the spherical drop. Following the bifurcation (figure 
5 b) we observe that the evolution is distinctly different from that depicted in figure 
3(b). Now we find that the tip of the liquid cone contracts only briefly. Subsequently 
the tip of the cone starts to descend while the small drop slowly develops at the end of 
the cone. The length of the cone grows significantly before the small drop eventually 
breaks away. The volume of the first drop was V, = 1.63 while that of the second drop 
is V, = 0.22. It is interesting to note that after the first bifurcation the fluid domain 
changes only at the tip of the fluid cone. The region immediately below the nozzle 
appears to be steady, unaffected by the downstream bifurcation. 

5. Discussion 
In the previous section we have seen that the volume of the drop following the first 

bifurcation is strongly dependent on the Bond number and the volume flux. In 
particular, we saw that the drop volume V, decreased with increasing Bond numbers 

4 FLM 278 
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FIGURE 6. A plot of Bo V, versus 1. is the volume of the fluid region below the bifurcation 
point. The different symbols correspond to the Bond numbers indicated in the plot. 

while V, increased with increasing volume flux. Let us now consider this dependence of 
V, on Bo and 3 in some more detail. In figure 6 we have plotted Bo V, versus log9 for 
the Bond numbers indicated in the plot. We note that while there is some variation, the 
scaled drop volumes for different Bond numbers are grouped fairly close together for 
a given value of 3. This implies that for a fixed volume flux we have roughly V, cc Bo-'. 
We observe that for 3 -= 0.01 the volume of the primary drop is almost independent 
of the volume flux. The reason for this is that for small volume fluxes the evolution of 
the drop, before the critical volume is exceeded, can be regarded as a succession of 
static drop shapes. Hence, at the critical volume the domain is only slightly modified 
by dynamic effects when the volume flux is small so that the evolution of the surface 
prior to the bifurcation is independent of the volume flux. 

One could try to estimate the volume of the primary drop by taking an approach 
similar to that in the theory on the growth and detachment of bubbles from a nozzle. 
Assuming that for a slowly growing drop (3 4 1) immediately prior to the bifurcation 
the shape of the fluid region attached to the nozzle is spherical, one finds that surface 
tension and gravitational forces are in balance when the radius of the drop is equal to 
(see Fritz 1935) 

If most of this fluid sphere were to break away from the nozzle, the dimensionless 
volume of the corresponding drop would be V,  = 2x/Bo. Hence, the scaled volume is 
then equal to 

BO V,  = 2 ~ ,  

which is, in fact, an alternative statement of what is known as Tate's law. It is clear 
from figure 6 that this is a poor approximation of the actual volume of the primary 
drop. The reason why Tate's law is a poor approximation lies in the assumption that 
the fluid region attached to the nozzle is spherical and that most of the spherical 
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volume actually breaks away from the nozzle. In the previous section we saw that this 
is a very poor approximation indeed. This is in marked contrast to the situation in 
which a gas bubble breaks away from a submerged nozzle. In that case the bubble is 
approximately spherical when the bubble is small enough so that Tate’s law gives a 
satisfactory approximation of the volume of the gas bubble (cf. Oguz & Prosperetti 
1993). 

It is imperative to validate our numerical work by comparing results of our 
calculations with available experimental work. We start with a qualitative comparison 
of our calculations with the photographs presented by Peregrine et al. (1990). While a 
sequence of photographs of the evolution before and after the bifurcation is presented 
by Peregrine et al. (1990), it is not possible to compare our calculations with each of 
these photographs since the time separation between the photographs is not accurately 
known. However, during the evolution there are two well-defined time instances, 
namely the times at which the primary and secondary bifurcations occur. We will 
compare our numerical results with the photographs of Peregrine et al. (1990) at these 
time instances. We assume that in the experiments clean water was used which, 
together with the radius of the tube in the experiments of 2.6mm, yields a Bond 
number of Bo = 0.91. In the experiments the drops were dripping ‘as slowly as possible 
to minimize initial motion’. In our numerical calculations we take 9 = 0.01 which, as 
can be seen in figure 6, is in the regime in which the drop size is independent of the 
volume flux (for these parameters the first bifurcation occurred after approximately 
540 dimensionless time units which corresponds to approximately 9 s). In figures 7 (a) 
and 7(b) we show pictures of the experimental drop shapes at the first and secondary 
bifurcation points with the drop shape as obtained from our calcluations superimposed 
(the thin drawn line). We observe in figure 7(a)  that there is a satisfactory agreement 
between our calculations and the experimental result. Two points at which the 
numerical and experimental results can be distinguished clearly are the transition 
regions between fluid cone and the liquid filament and the drop and the filament. In 
particular we observe that the top of the drop is somewhat dented in the numerical 
simulation whereas in the experiment the drop appears almost spherical. Also, the 
transition from the fluid cone to the filament is sharper in our calculations than in the 
experiment and we notice a slight asymmetry in the experiment. When we consider 
figure 7(b)  we see that the agreement between the numerical result and the experiment 
is rather poor. Unfortunately, the slight asymmetry which is apparent in figure 7(u) is 
magnified substantially after the first bifurcation leading to a large asymmetry when 
the second bifurcation occurs. We notice, furthermore, that more undulations are 
visible on the filament in the experiment than on the calculated filament. This difference 
is likely to be due to the fact that with the number of grid points we have used we are 
not able to resolve these short-wavelength features. Notwithstanding the differences, 
we note that the contraction and flattening of the fluid cone is fairly well predicted by 
the calculations although the flattening of the cone is somewhat more in our 
computational results than in the experiment. 

One of the applications of measuring the volume of fluid breaking away from a 
nozzle concerns surface tension measurements. Tables in which the volume of the drop 
breaking away from the nozzle is related to the coefficient of surface tension were 
published by Harkins & Brown (1919) for the case of low-viscosity liquids. It is 
important to emphasize that the drop volumes measured in experimental studies 
comprise the added volumes of the primary and secondary drops. Hence, if one aims 
to calculate drop volumes and compare these volumes with the experimental results, 
one is forced to proceed beyond the first bifurcation point. A good test of our 
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FIGURE 7. A comparison of experimental and calculated drop shapes at the instant of (a) the first and 
(6) the second bifurcation. The parameters used in the numerical simulation are Bo = 0.91 and J = 
0.01. The photographs of the drops were supplied by Professor D. H. Peregrine. 

numerical work, and in particular the validity of the approximation near the 
bifurcation point, is to compare drop volumes calculated numerically with those found 
experimentally by Harkins & Brown (1919). 

In their experimental work, Harkins & Brown also investigated the effect of the rate 
of formation of the drop on the drop volume. They found that if the growth rate of 
a clean water drop on a tip with a radius of 0.245 cm (with corresponding Bond 
number Bo = 0.82) was such that a bifurcation occurred in less than 80 s, the weight 
of the fluid region breaking away was affected. Slower growth rates yielded 
approximately similar drop weights. Assuming a surface tension coefficient equal to 
that of clean water, we find that if we take 9 = 0.001 a bifurcation occurs in our 
calculations after approximately 90 s when Bo = 1.0 and 66 s when Bo = 7 (the 
capillary timescale Tis related to the Bond number via T = B 0 ~ / ~ ( 6 / p g ~ ) ' / ~ ) .  Given that 
dynamic effects during the evolution of the drop are very small for 9 = 0.001 we adopt 
the following procedure to reduce the computational time. For a given Bond number 
we calculate the static shape of the drop with a volume slightly less than the critical 
volume. We then start the calculation with the static shape as the initial configuration. 
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FIGURE 8. A plot of scaled drop volumes versus Bo. The curve of small dots corresponds to the 
experimental results obtained by Harkins & Brown (1919, table VIII), the circles are numerical 
results. The close circles correspond to the scaled drop volumes of the primary drop (Bo V,) and the 
open circles are the scale volumes of the primary and secondary drops added together (Bo( V, + 5)). 

Note that the procedure adopted by Harkins & Brown (1919) was essentially aimed at 
producing a static drop with a volume equal to the critical volume in order to eliminate 
dynamic effects related to the formation of the drop. 

In figure 8 we have plotted the experimental results obtained by Harkins & Brown 
(1919) (the curve of small dots) and the drop volumes obtained from our numerical 
work. The closed circles are scaled volumes of the primary drop and the open circles 
are scaled volumes of the primary and secondary drops added together. We observe 
that our numerical results agree well with the experimental results when Bo < 6. For 
larger Bond numbers the calculated drop volumes deviated significantly from the 
experimental results. The differences between the experimental and numerical results 
may be due to discretization errors, our treatment of the necking region, viscous effects 
in the experiment or the fact that in the experiment the tip of the tube at which the drop 
formed was flat rather than the sharp-rimmed tip we have assumed in our calculations. 
We should, however, point out that the apparent reduction in accuracy of our 
calculations for Bo > 6 may be due, at least partly, to measurement errors in the 
experiment. Namely, the very careful experiments by Harkins & Brown (1919) yielded 
results accurate to less than 0.1 % for Bo < 6.5 but for Bo > 6.5 Harkins & Brown 
indicated that the accuracy of their experiments reduced significantly. Interesting in 
this respect is the fact that we found the dynamics close to the bifurcation point to 
become increasingly violent for increasing Bond numbers. For example, whereas for Bo - 0(1) instabilities would not occur within 5 time steps (with At = 0.01) after the 
threshold neck radius R, = 0.02 was exceeded, for Bo > 6 the instabilities would often 
occur within 2 time steps. This indicates a much more rapid and violent contraction of 
the neck for the larger Bond numbers. 

When we consider the relative contributions of the primary and secondary drops to 
the volume breaking away from the nozzle, it is clear from figure 8 that for Bo < 2 the 
volume of the secondary drop is only a small fraction of the volume of the primary 
drop : the volume of the secondary drop is less than 2 YO of the volume of fluid breaking 
away from the nozzle. This situation changes dramatically when the Bond number 
increases; for Bo = 7 more than 10% of the fluid breaking away from the nozzle is 
taken up by the secondary drop. In table 1 we have listed the calculated volumes of the 
primary and secondary drops and the ratio of these volumes for different Bond 
numbers. 
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Bo 
1 
2 
3 
4 
5 
6 
7 

v, 
3.880 
1.859 
1.220 
0.910 
0.743 
0.618 
0.536 

v, 
0.024 
0.035 
0.043 
0.053 
0.062 
0.067 
0.084 

v,l< 
0.006 
0.019 
0.035 
0.058 
0.083 
0.108 
0.156 

TABLE 1. Volumes of the primary and secondary drops and their ratio, calculated with 9 = 0.001 
and various Bond numbers 

6. Conclusions 
In this paper we have shown that it is possible to calculate the evolution of a pendant 

drop until close to the bifurcation point. Owing to the singular nature of the 
bifurcation point we experience severe numerical difficulties when this point is 
approached. It is, however, possible to continue the calculation beyond the bifurcation 
point by modifying the free surface in the necking region once the radius neck has 
decreased sufficient 1 y . 

For small Bond numbers and for small growth rates we find that immediately prior 
to the first bifurcation, the fluid region had three distinct sections: a conical region 
connects a thin liquid filament to a spherical drop. First the spherical drop breaks away 
and shortly thereafter a second bifurcation occurs at the point where the liquid filament 
is connected to the cone. By increasing the Bond number we find that the conical region 
disappears and both the length and the radius of the liquid filament grow. Again, we 
find that after the spherical drop breaks away a secondary bifurcation occurs on the 
liquid filament. Owing to the increased size of the liquid filament, the volume of the 
secondary drop has increased as compared with the case for the smaller Bond number. 

Increasing the discharge rate when the Bond number is small leads to the merging 
of the conical region and the liquid filament. Now we find that a long cone connects 
the drop to the nozzle. The first bifurcation is not succeeded immediately by a 
secondary bifurcation because the liquid filament is no longer present. When eventually 
a second bifurcation occurs we find that the volume of the second drop is comparable 
to that of the first drop. A large discharge rate (9 - 1) together with a large Bond 
number (Bo 2 4) leads to the development of a more or less steady flow region 
connected to the nozzle. Drops break away from the end of this capillary surface. 

A qualitative and quantitative comparison of our calculations with experimental 
results shows a satisfactory agreement. The contraction of the liquid filament and the 
subsequent formation of undulations on the capillary surface are interesting details of 
our numerical calculations which are confirmed in experiments. Drop volumes 
breaking away from a nozzle have been calculated and are in good agreement with 
experimental measurements for Bond numbers Bo < 6.  Our calculations show that the 
size of the secondary drop decreases relative to the size of the primary drop for 
decreasing Bond numbers, i.e. as the Bond number decreases an ever larger fraction of 
the volume breaking away from the nozzle is taken up by the primary drop. We are not 
aware of experimental results which confirm this observation. 
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FIGURE 9. Plots of the free-surface shapes of a contracting liquid cone: (a), (b) and (c )  show the 
evolution of cones with semi-angles equal to 8 = 0.05~,  0.07% and 0 . 1 ~  respectively. In all three 
figures the free-surface shapes are shown at times t = 0.05 (0.05) 1.0. 

FIGURE 10. The free-surface shapes of the evolving cone for the case with 8 = 0 .05~  at the times t = 
0.25,0.5, 0.75 and 1.0. The free-surface shapes at the different times are superimposed, appropriately 
scaled and shifted to exhibit the self-similar character of the evolution. 

Appendix 
Here we will present some results of calculations concerning the evolution of a fluid 

cone driven by surface tension forces. It is assumed that the fluid cone is at rest initially 
and we take Bo = 9 = 0. The conical region is taken to have a base with unit radius 
while at the tip of the cone we place a spherical cap with radius rT.  The semi-angle of 
the cone is denoted by 8. In figure 9(a-c) we have plotted different stages of the 
evolution of a cone with rT = 0.05 and B = O.O5x, 0.075~ and 0. lx respectively. All the 
free-surface shapes in figure 9 are shown at equal time intervals. In all cases we observe 
that the fluid cone contracts in a regular manner until the point at which disturbances 
on the capillary surface reach the contact line of the fluid cone and the rim of the 
nozzle. To investigate the possible self-similar character of the evolution of the cone as 
shown in figure 9, we can superimpose appropriately shifted and scaled free-surface 
shapes to determine whether or not the surface shape changes with time. The free- 
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surface shapes as shown in figure 9(a) at the times t = 0.25,0.5,0.75,1.0, scaled and 
shifted (the scaling factors for the subsequent times are 1.0, 0.645, 0.488 and 0.417 
respectively) are plotted in figure 10. We observe that the free-surface shapes are indeed 
self-similar. Self-similarity is destroyed eventually owing to the finite extent of the 
domain. Extending our investigation to self-similarity for very short times is limited by 
the resolution of our numerical scheme. It is interesting to note that a log-log plot of 
the scaling factors versus time reveals that the rate at which the tip of the cone contracts 
is proportional to t - O s s 3 .  This is close to the value t-2/3 as obtained by Keller & Miksis 
(1983) in their study of a contracting liquid wedge. 
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